Monitoring the Lower Trophic Level of Lake Erie
Kathleen Hastings and Mark Clapsadl, Great Lakes Center

Abstract
Since 2008, the Great Lakes Center has monitored two sites in eastern Lake Erie for the Lower Trophic Level Assessment, a multiagency effort begun in 1999 by the Forage Task Group of the Great Lakes Fisheries Commission. This long-term project is aimed at building a database of biotic and abiotic information from sampling stations throughout Lake Erie to describe annual trophic conditions. From May through October, we collect physical conditions. From May through October, we collect physical

Background
In 1999, the Forage Task Group of the Great Lakes Fisheries Commission designed and implemented the Lake Erie Lower Trophic Level Assessment (LTLA). This project involves at least seven agencies from the United States and Canada that were already invested in sampling on the lake, and serves to coordinate and standardize their methods for long-term monitoring. As part of this initiative, a database was established to manage the data collected for the LTLA, to allow data sharing between agencies, and to generate reports on the status of the lake. The major goals of this project are to monitor specific parameters to encompass ecosystem change, build a database with years of data, and apply the information gleaned about Lake Erie to assess the environmental effects on fisheries production.

At least twenty sites, arranged in pairs, were established throughout Lake Erie. There are now over twelve years of data accumulated in the LTLA database. The Great Lakes Center has been actively involved in the LTLA since 2008, when we took over Stations 19 and 20 from the US Fish & Wildlife Service. Our goals in joining this sampling effort are to collaborate with other agencies in the region, receive access to the group database, and to monitor climate change and invasive benthic species. In 2010, Dr. Alicia Pérez-Fuentetaja (Biology/GLC) joined the Forage Task Group as a representative for Buffalo State.

Sample Collection
To accurately capture ecosystem change, nine limnological parameters were identified by a panel of experts: temperature, oxygen, secchi depth, light, total phosphorous, chlorophyll a, phytoplankton, zooplankton, and benthos. The Great Lakes Center is capable of monitoring all of the parameters except light. In addition, we also measure pH, conductivity, and turbidity.

Temperature Profiles
There are a number of ways to interpret the data collected in the LTLA database, depending on one’s focus. Although it makes the most sense to incorporate data from the entire lake, one way to visualize the temperature data collected at one location is to make an isopleth plot. This kind of graph puts temperature profiles from multiple dates on one graph, with lines connecting equal temperatures. It’s useful for seeing how temperature changes throughout the water column over time and whether the water becomes stratified. Isopleths can be compared between different locations in the same year, or at a single location between years for a sense of the seasonal variability.

In 2010, Dr. Alicia Pérez-Fuentetaja (Biology/GLC) joined the Forage Task Group of the Great Lakes Fisheries Commission to monitor specific parameters to encompass ecosystem change, build a database with years of data, and apply the information gleaned about Lake Erie to assess the environmental effects on fisheries production.

At least twenty sites, arranged in pairs, were established throughout Lake Erie. There are now over twelve years of data accumulated in the LTLA database. The Great Lakes Center has been actively involved in the LTLA since 2008, when we took over Stations 19 and 20 from the US Fish & Wildlife Service. Our goals in joining this sampling effort are to collaborate with other agencies in the region, receive access to the group database, and to monitor climate change and invasive benthic species. In 2010, Dr. Alicia Pérez-Fuentetaja (Biology/GLC) joined the Forage Task Group as a representative for Buffalo State.

Sample Processing
This project also requires a fair amount of lab time. Chlorophyll samples are filtered the day they are collected and the filters are frozen. Later, they are ground up to extract the chlorophyll into an aqueous acetone solution, and analyzed in our lab with a spectrophotometer using the Trichromatic Method (Standard Methods 10200H2c). Benthos samples are sorted to isolate macroinvertebrates from the sediment and debris. The organisms are preserved so they can then be identified and counted when time permits. Plankton and total phosphorus samples are archived or sent to other facilities for analysis.

Temperature Profiles
There are a number of ways to interpret the data collected in the LTLA database, depending on one’s focus. Although it makes the most sense to incorporate data from the entire lake, one way to visualize the temperature data collected at one location is to make an isopleth plot. This kind of graph puts temperature profiles from multiple dates on one graph, with lines connecting equal temperatures. It’s useful for seeing how temperature changes throughout the water column over time and whether the water becomes stratified. Isopleths can be compared between different locations in the same year, or at a single location between years for a sense of the seasonal variability.

For instance, 2009 had a much colder spring than 2012, but both years had milder summers. By contrast, 2011 swung between 4°C in May and 24°C in August. The spring temperatures may be influenced by ice cover such that years with earlier ice-out warm faster than years with later ice-out.

Conclusion
Long-term monitoring projects aren’t quite like other studies in that there often isn’t a hypothesis. The main goal is to describe the changes occurring in Lake Erie over a long period of time by collecting decades of data. The database can also be used by fisheries managers to help make decisions based on trophic indices.

We will continue to monitor our two sites and contribute to the Lake Erie LTLA. In the future, we may also gain access to the complete database.

References

Acknowledgements
We wish to acknowledge Alyse Fischer for help collecting samples this season; Betsy Tromler (USFWS) and Jim Markham (NYSGFC) for assistance with the LTLA, as well as the Great Lakes Fishery Commission and the Research Foundation.